Naval Ordnance Safety & Security Activity
Software Security Assessment Tools
Review

Booz | Allen | Hamilton

0

Safety-critical systems

» Main functions: monitoring, diagnosis, control of physical systems
» Extraordinary conditions = hazards (accidents)

» Consequences: potentially catastrophic, even fatal
» Examples:

- Embedded: onboard vehicle controllers/computers,
medical devices, process controllers, robots

— Non-embedded: SCADA and DCS, air traffic control
systems, telematic monitoring/diagnostic/control
(OnStar, etc.)

— Hybrid: weapons systems

Booz | Allen | Hamilton

1

Security critical systems

» Main functions:

— sensitive/privacy information processing,
transmission, storage;

- network communications;

— security (detection, protection, response) for
data, software, networks, physical facilities

» Extraordinary conditions = threats (attacks/
exploits; errors with exploitable results)

» Consequences: depend on nature of purpose,
users, data, resources

» Examples:

- Embedded: network controllers, facility security sensors/alarm systems,
Trusted Platform Modules (TPMs)

- Non-embedded: operating system kernels and file systems, virtual machine
monitors, information systems/applications, communications
systems/applications, computer and network security systems and sensors

— Hybrid: networking devices, security appliances, cryptographic devices, ATM
machine

Booz | Allen | Hamilton

2

Using tools to begin integrating safety and
security

Terminology

» Extraordinary condition = Any condition deviating from those under which
software is designed to operate

Divergences
» What constitutes an extraordinary condition
» What is at stake if software fails due to an extraordinary condition

» Level of tolerance for failure

Convergence

» Shared need for software to remain dependable under extraordinary conditions

Booz | Allen | Hamilton

3

Security of safety-critical software

Must be addressed at three levels
1. Functional

7 threats to software’s own availability (denial of service) and integrity
(corruption, tampering, malicious code)

2. Data

7 threats to integrity of inputs, outputs (tampering, substitution, rerouting,
deletion, malicious code insertion, disclosure)

2 threats to information processed, stored, transmitted (same as
inputs/outputs)

3. Execution environment
7 threats to availability, integrity of environment components

2 threat of resource theft

Booz | Allen | Hamilton

4

Security of safety-critical software cont'd

System vs. software level security
» System: focus is on
- external interfaces/interactions
« between system components
 between system and other systems

 between system and users

» Software: focus is on
— internal workings and
— external interfaces/interactions
 between software components/units/modules
 between software and execution environment

 between software and users or process

Booz | Allen | Hamilton

5

Tool Categories

» The categories of tools
evaluated and detailed in
this paper are:

» Static Analysis

» Source Code Fault
Injection

» Dynamic Analysis

» Architectural Analysis

» Pedigree Analysis

» Binary Code Analysis

» Disassembler Analysis

» Binary Fault Injection

» Fuzzing

» Malicious Code Detectors

» Bytecode Analysis

Booz | Allen | Hamilton

6

Methodology

» Open source information
- High-level vendor-provided data
» Which stage of the software development life cycle targets
— Discussion of additional stages if applicable
» Required skills
— Higher maturity level of tools indicates less of a regiured skillset

» Benefits and drawbacks

Booz | Allen | Hamilton

7

Summary of Evaluation Static Source Bina Binar Malicious
Key: Analysis Code Dynamic | Architectural | Pedigree Y Disassembler y) Byte Code
-) . ; Code . Fault Fuzzing Code h

X*- To be most beneficial X+ - In some cases Code Fault Analysis Analysis Analysis Analvsi Analysis Iniecti D Analysis
X% - When possible X# - e.g., compilation Scanning L Injection nalysis njection etector

o \ 4 \ 4 \ 4 \ 4 A 4 \ 4 \ 4 \ 4 A 4 \ 4 >

When to Use
Requirements X
Design X*
Implementation X* X X X X* X X X X X X*
Testing X X* X* X X X X X* X* X X
Production X X X X X X X X X X X
i<iti * * *
Acquisition X v X v X v X v X v X v X v X v X v X v X R
Required Skills (Understanding of...)
Underlying source code X
Underlying development methodology X# X X
Implementing language X X X%
Binary X+ X
Bytecode X
Testing methodology X X X X X X X
\ 4 \ 4 \ 4 \ 4 \ 4 A 4 \ 4 \ 4 \ 4 \ 4 \ 4

Booz | Allen | Hamilton

Summary of Evaluation Static Source Binar Bina Malicious
Key: Analysis Code Dynamic | Architectural | Pedigree Y Disassembler Ty B Byte Code
-) . ; Code . Fault Fuzzing Code ;
X*- To be most beneficial X+ - In some cases Code Fault Analysis Analysis Analysis Analvsi Analysis Iniecti D Analysis
X% - When possible X# - e.g., compilation Scanning l Injection nalysis njection etector
s Y A\ 4 Y Y A\ 4 A A 4 Y Y A 4 I
Benefits
Reduces cost over system life X X X X X X X X X X X
Educates developers about secure programming X X X
Rechecks legacy code X X X X X X X
Automates repetitive and tedious aspects of source X X
code security audits
Checks for good programming style X X
Increased test coverage X X X
Increased accuracy X X
No need for source code X X X X X X X X
Improved accuracy and coverage X X X X
Reduces the amount of testing necessary X
No disassembly X X X X X X X X
Grg?jfcrlteed the analysis is performed on the actual X+ X X X X X X X
P v v v v v Y v v v v

Booz | Allen | Hamilton

Summary of Evaluation Static Source Bina Binar Malicious
Key: Analysis Code Dynamic | Architectural | Pedigree Co d;y Disassembler Faulty Fuzzing Code Byte Code
X*- To be most beneficial X+ - In some cases Code Fault Analysis Analysis Analysis Analvsi Analysis Iniecti Detect Analysis
X% - When possible X# - e.g., compilation Scanning l Injection nalysis njection etector
= \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 q
Drawbacks

No architectural-level flaws X X X X X X X
Thorough understanding of the software X X X X
Required expertise X X X X X
Requires use of open source software X
Lack of tool availability X X X
Licensing concerns X
Reliance on a primary vendor X
Additional analysis X X X X X X
Additional preparation X X X X

.. . X
Limited to a single language \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4

Booz | Allen | Hamilton

10

Further Work

» The Tools Report is available at:

- https://buildsecurityin.us-cert.gov/swa/procwg.html

» Safety and Security Considerations for Component-Based Engineering of
Software-Intensive Systems

- https://buildsecurityin.us-cert.gov/swa/procwg.html

» In-depth review of specific security tools
— Review the capabilities of tools
— Review their applicability to the safety community

» Safety and Security Test Toolkit

Booz | Allen | Hamilton

11

QUESTIONS?

» Available for public comment at:

— https://buildsecugifyin.us-cert.qov/s procwdg.html

Captiain, whatdoes, A
“Global reconfiguration in progess-- L
Flease Stamd By™

S

Booz | Allen | Hamilton

12

